MATH 2050B Mathematical Analysis I 2023-24 Term 1 Problem Set 6

due on Oct 27, 2023 (Friday) at 11:59PM

Instructions: You are allowed to discuss with your classmates or seek help from the TAs but you are required to write/type up your own solutions. You can either type up your assignment or scan a copy of your written assignment into ONE PDF file and submit through Gradescope on/before the due date. Please remember to write down your name and student ID. No late homework will be accepted. All the exercises below are taken from the textbook.

Required Readings: Chapter 3.4

Optional Readings: none

Problems to hand in

Section 3.4: Exercise # 5, 7(b), 10, 14, 19

Suggested Exercises

Section 3.4: Exercise # 1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 15, 16, 18

Challenging Exercises (optional)

1. Let (x_n) be the sequence of real numbers defined for $n \in \mathbb{N}$ by (with the convention that 0! = 1)

$$x_n := \sum_{k=0}^n \frac{1}{k!} = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}$$

(a) Prove that (x_n) converges to some real number $e \in \mathbb{R}$.

- (b) Show that $e = \lim \left(1 + \frac{1}{n}\right)^n$.
- (c) Prove that e is irrational.
- 2. This is a continuation of Challenging Exercise 2 of Problem Set 5.
 - (a) Find a sequence (x_n) of positive real numbers with $\limsup(x_n) = +\infty$ such that $\lim(s_n) = 0$.
 - (b) Let (y_n) be the sequence defined by $y_n := x_{n+1} x_n, n \in \mathbb{N}$. Show that for $n \ge 2$,

$$x_n - s_n = \frac{1}{n} \sum_{k=1}^{n-1} k y_k$$

Suppose that $\lim(ny_n) = 0$ and that (s_n) is convergent. Prove that (x_n) is convergent.